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Abstract

An axisymmetric finite element method is developed and employed to simulate healing evolution of intragranular

penny-shaped microcracks under interface migration driven by total free energy change consisted of surface tension and

chemical potential difference between phases. The validity of the method is confirmed by an agreement of the shrinkage

and growth behavior, simulated numerically, of an isolated spherical grain with those predicted theoretically. The

results showed that the surface tension alone serves to evolve the initial penny shape to a spherical one and, coupled

with the chemical potential difference, dominates volume shrinkage of the microcracks. As the initial aspect ratio of a

microcrack increases, both spheroidization and volume shrinkage times increase continuously. And the volume

shrinkage process of the microcracks can be greatly promoted with an increase in the chemical potential difference.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When damage microcracks are generated in materials, the internal energy of the material increases to-

gether with some entropy increment, that is, the system is in a metastable state of the thermodynamic

equilibrium. If some energy is imported from the environment, the system can overcome a potential barrier
and automatically evolve along the way of minimizing the total Gibbs free energy (TGFE) of the system, so

that the damage could be healed and the material performance could be partially restored. Otherwise,

morphology of the damage microcracks, i.e. the sizes, shapes, volume fraction, and the mutual arrangement

of the microcracks, plays an important role in determining mechanical, electric and magnetic properties of

the material (Li and Chen, 1999). Therefore, it is essential to be able to understand microcrack evolution so

that the microcrack healing mechanism can be comprehended and controlled to achieve a desired specific

engineering requirement (Gao et al., 2000).
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There have been many investigations into internal crack healing and similar morphological evolution

processes over the past 40 years (Evans and Charles, 1977; Singh and Routbort, 1979; Drory and Glaeser,

1985; Scott and Tran, 1985; Carter and Glaeser, 1987; R€oodel and Glaeser, 1988; R€oodel and Glaeser, 1990a;
Hsueh et al., 1982; Powers and Glaeser, 1993; Suo and Wang, 1994; Svoboda and Riedel, 1995). The
microcrack shape changes under capillarity forces, namely chemical potential gradients arising from high

surface curvature (Mullins, 1957; Bonzel, 1983; Drechsler, 1983). And in many practical situations

microcrack evolution in polycrystalline materials occurs individually by solid state diffusion, the migration

of interfaces, or a combination of these processes, depending on the sample profile (conical tip, grain

boundary groove, simple or multiple scratches) and on experimental conditions (heating at low or high

temperatures, vacuum annealing or heating in equilibrium vapor pressure, geometrical dimensions of the

samples) (Binh and Uzan, 1987; Pan et al., 1997). It has been demonstrated, both theoretically and ex-

perimentally, that there are several geometrically distinct stages to the crack healing process in two di-
mensions (R€oodel and Glaeser, 1990b; Powers and Glaeser, 1993; Huang et al., 2001, 2002). That is,

significant progress has been made in modeling microcrack behavior controlled by solid state diffusion. And

it can be said that the previous efforts have enabled us to relate many aspects of the macroscopic behavior

of engineering materials to their microstructures and the underlying physical processes. The situation is,

however, far from satisfactory, since real material systems are often complex and various, often unrealistic,

assumptions have to be made in the material models in order to solve the mathematical equations (Pan

et al., 1997). Especially, the kinetics of morphological evolution in axisymmetric microcracks (such as

penny-shaped microcracks) has been given less-than-adequate attention. Only a few experimental studies
have been reported (Evans and Charles, 1977; David and Evans, 1984; Yong and Wayne, 1987; Powers and

Glaeser, 1992), most of which give only qualitative information. In comparison with a two-dimensional

crack, an axisymmetric microcrack in three dimensions has two radii of curvature, the in-plane radius R1
and the axisymmetric radius R2, giving rise to more complex behaviors. The evolution of such cracks would
be controlled by the driving forces induced by both curvatures. Therefore, there is a general lack of studies

of three-dimensional morphological evolution of crack healing, despite of the obvious need to understand

the phenomenon of crack healing in three dimensions. Until to now, to the author�s knowledge, litter at-
tention has been devoted to the healing evolution of penny-shaped microcracks by interface migration
either on experimental investigations, or in numerical analyses. The aim of the present project reported here

is mainly to numerically describe the morphological evolution of the penny-shaped microcracks by inter-

face migration, and the relatively experimental works will be treated elsewhere.

Recently, a weak statement for surface motion has been formulated (Suo, 1997; Carter et al., 1997). It has

weaker requirements on the smoothness of surface. On the basis of the weak statement, Sun et al. (1997)

have developed a finite element program for simulation surface motion in two dimensions. Huang and

Yang (1999) extended the two-dimensional finite element formulation to a three-dimensional (3D) finite

element scheme to simulate the migration of interfaces in materials under linear kinetics. Kim and Kishi
(1999) developed the method to simulate the Zener pinning behavior involving a three-dimensional effect

without considering the chemical potential difference between the two adjacent phases in the TGFE of the

system. The finite element method can capture intricate details in transient motion and readily includes

multiple energetic forces and rate processes. Important physical conclusions were drawn from these nu-

merical studies (Huang and Yang, 1999; Kim and Kishi, 1999; Kim et al., 1999; Kim, 2000, 2001; Prevost

et al., 2001). However, the numerical technique has certain limitations, for instance, the axisymmetrical

cases involving the chemical potential difference have not been reported in literature up to now.

In the present paper, an axisymmetric finite element formulation is developed to model the morpho-
logical evolution during the healing process of an intragranular microcrack controlled by the interface-

migration kinetics as described in the classical paper of Mullins (1957), which also can be explored to

simulate the morphology change of the second-phase precipitate particles. Considering the interface tension

and the chemical potential difference between the two adjacent phases in the TGFE, we assume that surface
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properties are independent of crystallographic orientations, namely surface energy and interface migration

rate are isotropic. Thermodynamically, in the absence of applied stress, the morphology of a penny-shaped

microcrack, similar to a single coherent particle, is determined by two factors: (1) the interfacial energy, and

(2) the chemical potential difference between the matrix and the microcrack. And the interfacial energy of a
microcrack is roughly proportional to its interfacial area, while the chemical potential difference is roughly

proportional to its volume.

2. Axisymmetric finite element method

2.1. Weak statement of interface migration

When a solid particle is in contact with an environment (a vapor or a liquid solution), or an isolated

precipitate surrounded by a matrix, the solid may gain mass from, or lose mass to, the environment, both

causing the interface to move. The surface reaction is driven by the interfacial energy and by the chemical

potential difference between the solid and the environment. In atomic scale, the movement of interface

occurs by a thermally activated atomic jump across the interface. The driving force, p, for the atomic jump
is supplied by a curvature-induced energy difference and the chemical potential difference per unit volume

of atoms between the two adjacent phases Dg (i.e., the chemical potential of the solid minus that of the
environment) (Suo, 1997).

p ¼ �jc � Dg ð1Þ

where c is the surface energy per unit area (or surface tension) and is assumed to be isotropic. The curvature
of the interface j is positive when the surface is concave. When p ¼ 0, the solid is in equilibrium with the

environment. When p > 0, the solid gains mass from the environment. When p < 0, the solid loses mass to

the environment. As expected, c tends to drive the solid surface in the direction toward the center of the
curvature and Dg tends to cause the solid to shrink if Dg > 0.

The actual normal velocity of the interface motion, vn, is a function of the driving force. For simplicity,
we adopt a linear kinetic law (Sun et al., 1997; Prevost et al., 2001):

vn ¼ mp ð2Þ

Here m is the specific rate and depends on temperature in usual way, m ¼ m0 expð�q=kT Þ, where m0 is the

frequency factor, q is the activation energy, k is the Boltzmann�s constant, and T is the temperature. The

linear kinetic law (Eq. (2)) is a special case of a more general law introduced by Hilling and Charles (1965)

and is valid when the driving force is small compared to the average thermal energy.
A virtual displacement, drn, of the interface is a motion in the direction normal to the interface and varies

arbitrarily along the curved interface. It need not obey any kinetic law. Associated with the virtual motion,

the total free energy of the system varies by an amount dG. Using the kinetic law (Eq. (2)), a weak statement
of interface motion can be written as (Suo, 1997; Sun et al., 1997)Z

vn drn
m

dA ¼ �dG ð3Þ

The actual velocity distribution, vn, satisfied Eq. (3) for arbitrary distributions of the virtual displacement.

2.2. An axisymmetric finite element

An axisymmetric surface is generated by rotating a plane curve around an axis lying on the same plane.
In this paper, we introduce frustum elements to approach the surface of axisymmetric microstructure and
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divide the generating curve into many small straight elements. The motions of the nodes describe the

motion of the surface. Each node on the plane curve represents a circle on the surface in three dimensions.

Fig. 1 shows one frustum element with two nodes ðx1; y1Þ and ðx2; y2Þ in two dimensions. The element has
length l and slope h, which relate to the coordinates of the two nodes as

x2 � x1 ¼ h cos h; y2 � y1 ¼ h sin h ð4Þ

The local coordinate, s, is measured from the mid-point of the element. The surface area of the frustum

element is pðx1 þ x2Þl, and the initial free energy, Ge
0, is

Ge
0 ¼ cpðx1 þ x2Þlþ DgDV ð5Þ

where DV is the volume of the frustum element.

For each surface element, the virtual motions of the nodes are

½dxj�e ¼ ½ dx1 dy1 dx2 dy2 �T ð6Þ

Let _xx1, _yy1, _xx2 and _yy2 be the nodal velocities of the element. The generalized velocities are

½ _xxj�e ¼ ½ _xx1 _yy1 _xx2 _yy2 �T ð7Þ

At a point, which has distance of s, its virtual displacement drn and normal velocity vn have the relations as
follows:

drn ¼ N1 dx1 þ N2 dy1 þ N3 dx2 þ N4 dy2
vn ¼ N1 _xx1 þ N2 _yy1 þ N3 _xx2 þ N4 _yy2

�
ð8Þ

Fig. 1. A frustum element.
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The interpolation coefficients are given by

N1 ¼ � 1

2
� s

l

� �
sin h N2 ¼

1

2
� s

l

� �
cos h

N3 ¼ � 1

2
þ s

l

� �
sin h N4 ¼

1

2
þ s

l

� �
cos h

8>>><
>>>:

ð9Þ

2.3. Nodal driving forces of the frustum element

For each element, the displacement of the node can be divided into two components. One, dl, is parallel
to the element, and the other, dr, is normal to the element as shown in Fig. 1. When the two nodes move by
Dl1 and Dl2, both the surface area and its volume of the axisymmetric element change, and the corres-
ponding free energy varies by dGe

l . Neglecting the terms of second order, dGe
l can be represented as

dGe
l ¼ 2cpx1 dl1 � 2cpx2 dl2 þ

pDg
3

fðy2 � y1Þ cos h½dl1ð2x1 þ x2Þ þ dl2ð2x2 þ x1Þ�

þ ðx21 þ x22 þ x1x2Þðdl2 � dl1Þ sin hg ð10Þ

The variation of the free energy caused by the displacement of the nodes in the normal direction (i.e., dr1
and dr2) is

dGe
r ¼ cpl sin hdr1 þ cpl sin hdr2 þ

pDg
3

f�ðy2 � y1Þ sin h½dr1ð2x1 þ x2Þ þ dr2ð2x2 þ x1Þ�

þ ðx21 þ x22 þ x1x2Þðdr2 � dr1Þ cos hg ð11Þ

Then the total variation of the free energy can be expressed in terms of virtual motion of the nodes:

dGe ¼ �f1 dx1 � f2 dy1 � f3 dx2 � f4 dy2 ð12Þ

The force components acting on the two nodes due to the element surface tension and chemical potential

difference Dg are

½fi�e ¼ cp

2x1 cos h � l sin2 h

2x1 sin h þ l sin h cos h

�2x2 cos h � l sin2 h

�2x2 sin h þ l sin h cos h

2
6666664

3
7777775
þ pDg

3

ð2x1 þ x2Þðy2 � y1Þ

�ðx21 þ x22 þ x1x2Þ

ð2x2 þ x1Þðy2 � y1Þ

ðx21 þ x22 þ x1x2Þ

2
666664

3
777775

ð13Þ

2.4. Viscosity matrix of the frustum element

Using Eqs. (8) and (9), and extending the integration over the surface of the frustum element, Eq. (3)

becomes:

½dxi�e
T

½Hij�e½ _xxj�e ¼ ½dxi�e
T

½fi�e ð14Þ
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where the viscosity matrix is

½Hij�e ¼
pl
6m

ðx1 þ x2Þ

2 sin2 h �2 sin h cos h sin2 h � sin h cos h

�2 sin h cos h 2 cos2 h � sin h cos h cos2 h

sin2 h � sin h cos h 2 sin2 h �2 sin h cos h

� sin h cos h cos2 h �2 sin h cos h 2 cos2 h

2
66664

3
77775

þ pl2 cos h
6m

� sin2 h sin h cos h 0 0

sin h cos h � cos2 h 0 0

0 0 sin2 h � sin h cos h

0 0 � sin h cos h cos2 h

2
66664

3
77775 ð15Þ

The components of the viscosity matrix ½Hij�e and the force column ½fi�e depend on the nodal positions,
and Eq. (14) is a set of non-linear ordinary differential equations. Since the equations are to hold for any

variation ½dxi�e
T

, we can obtain the controlling equation of the finite element

½Hij�e½ _xxj�e ¼ ½fi�e ð16Þ

The following procedure of the numerical simulation is the same as in two-dimensional problem (Sun

et al., 1997; Kim and Kishi, 1999). We can calculate the velocity of all the discrete points on the curve (in

two dimensions) by the above finite element method and let them advance by an amount vnDt in a direction
normal to the curve, where Dt is an appropriately chosen time increment. Repeat this procedure for many
time steps to simulate the evolution of the microstructures.

3. Numerical simulations and discussion

It is known from Eq. (1) that the surface tension and the chemical potential difference of the two phases

constitute a thermodynamic force, causing the microstructure, such as grains, microcracks and so on, to

evolve. In this section, the grain growth and shrinkage are firstly simulated by the finite element method

developed in this paper in order to check the reliability of the finite element method in simulating mi-

crostructure evolution. And the numerical results of the grain shrinkage driven by either surface tension
alone or coupled with the chemical potential difference are compared with those theoretical predictions,

respectively. Then, the finite element method is applied to analyze the healing evolution process of intra-

granular penny-shaped microcracks.

3.1. Grain growth and shrinkage

When a particle is heated, its shape evolves to reduce the free energy. Now we firstly consider an isolated

spherical grain in an isotropic matrix with an identical chemical potential, and its growth behavior is caused
only by surface tension. That is, the particle is in equilibrium with the environment and the driving force p is
�2c=R in Eq. (1), where R is the radius of the spherical grain. In this case, the general kinetic law of grain

growth is given by (Kim and Kishi, 1999)

R
R0

� �n

� 1 ¼ K t
_

n ð17Þ

where R0 is the initial radius and t
_

n, the normalized time (¼ tmcR�2
0 ). The value of K obtained by fitting

a curve to Eq. (17) is )4.0 and n ¼ 2, consistent with the theoretical values. The value of K for a two-
dimensional case is )2.0 and n ¼ 2. For n ¼ 2 and K ¼ �4:0, a driving force of 2c=R is obtained for grain
boundary movement by differentiating Eq. (17) with respect to time.
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The variation of the radius of the spherical grain R with respect to time obtained by finite element method
is shown in Fig. 2, along with two-dimensional results. It is obvious that the numerical results agree well

with the theoretical values.
Next consider a spherical particle immersed in a large mass of a vapor or solution. The system also has

only one degree of freedom, R, the radius of the sphere. Within the environment, molecular mobility is so
large that the chemical potential is taken to be uniform. The solid and the environment, however, are not in

equilibrium with each other: the solid loses mass to the environment by dissolution. And the driving force

on the surface of the spherical particle is �ð2c=RÞ � Dg. The total free energy can be written as

G ¼ 4pR2c þ 4

3
pR3Dg ð18Þ

Here, c is always positive, but Dg can be either positive or negative. For a positive Dg, the volume term
reduces the free energy when the particle shrinks. In the case of Dg < 0, a critical radius Rc corresponding to
maximal free energy is obtained by setting dG=dR ¼ 0, giving

Rc ¼ �2 c
Dg

ð19Þ

Imagine a particle of radius R 6¼ Rc. Thermodynamics requires that the particle change size to reduce G.
If R > Rc, the volume term in Eq. (18) becomes increasingly important, and the particle will expand to a

larger and larger sphere to reduce G because p > 0. Contrarily, if R < Rc, the particle will shrink to a sphere
and disappear.
From Eqs. (1) and (2), the analytical solution for the evolution of the spherical particle from an initial

radius R0 is given by (Suo, 1997)

ðR� R0Þ þ Rc ln
R� Rc
R0 � Rc

����
���� ¼ �mDgt ð20Þ

The particle radius as a function of the time, RðtÞ, are shown by solid line in Fig. 3. The predictions based
on the present FEM scheme are also plotted in Fig. 3 by dots. They agree very well with each other.

Hence, the present axisymmetric finite element formulation is valid in simulating the behavior of grain

growth. And it is applicable for microstructure evolution not only controlled by surface tension, but also by
both surface tension and the chemical potential difference between the two adjacent phases.

 γ

Fig. 2. Shrinkage behavior of the spherical grains.
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3.2. Evolution of intragranular penny-shaped microcracks

3.2.1. Microcrack evolution driven by isotropic surface tension alone

The free energy change to drive the interface migration has contributions from many origins. We now

consider the evolution of an intragranular microcrack driven by the isotropic surface tension alone. In the

present study, referring to the work of (Svoboda and Riedel, 1992), the accuracy of the numerical analysis

was checked by comparing computations based on different node numbers with one another. We found that

the differences between the model with different nodes are negligible when the total node number (N ) is
larger than 80. And for convenience, we introduce the dimensionless parameters: t̂t ¼ tmch20, Dĝg ¼ Dgh0=c,
where the thickness of the microcrack h0 is taken as 0.2 in all of the calculations. The initial shape of the
intragranular microcrack is taken to be penny-shaped as shown in Fig. 4(a) at t̂t ¼ 0, which is characterized

by the aspect ratio b defined as the ratio of the diameter D0 to the thickness h0. The surface mobility m is

assumed to be isotropic. At a fixed temperature, the intragranular microcrack evolves its shape because the

curvature of the microcrack profile varies from point to point, which causes a migration of surface atoms

from a point of higher curvature (higher chemical potential) to a point of lower curvature (lower chemical

potential). Fig. 4 shows the simulation of an intragranular penny-shaped microcrack under the condition of

b ¼ 10. Since the microcrack evolution is only driven by the surface tension (Dĝg ¼ 0), that is, Rc ¼ 1, it is
obvious that the volume of the microcrack will shrink as shown in Fig. 3. The microcrack simultaneously

Fig. 4. The shape evolution of the penny-shaped microcrack of b ¼ 10 driven by surface tension alone.

Fig. 3. Evolution of a spherical grain with isotropic surface tension and the chemical potential difference.
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changes shape from a penny to a sphere and the mass in the grain leaves the grain, cross the microcrack

surface, and join to the microcrack, leading to its shrinkage, as shown in Fig. 4 at t̂t ¼ 1:6� 10�3. This shape

evolution process can be easily identified in many natural phenomena. Fig. 4 suggests that the microcrack

always evolves to a spherical void eventually, independent from its initial shape.

By plotting the spheroidization time of the penny-shaped microcracks as a function of the original aspect
ratio b (Fig. 5), we find that the spheroidization time increases roughly linearly in b because the trans-

portation path of the mass is long for larger b. It can be best fitted using the following approximate for-
mula:

t̂ts ¼ ð�2:4932þ 1:889bÞ � 10�4 ð21Þ

Fig. 6 shows the relative volume shrinkage Vs=V0 as a function of time t̂t for different values of b, where V0
is the initial microcrack volume and Vs, the volume shrinkage. Vs=V0 ¼ 1 means that the microcrack
completely vanishes, that is, the penny-shaped microcrack heals. As can be seen in Fig. 6, the microcrack

healing time t̂th consistently increases as b increases. The slope of these curves at any point represents

the shrinkage rate of the microcrack volume. The curves in Fig. 6 show that, for a given penny-shaped

Fig. 5. The spheroidization time t
_

s of the penny-shaped microcracks only driven by surface tension as a function of b.

Fig. 6. Microcrack volume shrinkage––time behavior as a function of b.
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microcrack, its volume shrinkage rate is greater at the beginning of the evolution process and then it be-

comes smaller gradually because the curvature variation along the microcrack surface is reduced conti-

nuously as its shape changes to a spherical one. And the curves also show that the volume shrinkage rate

decreases with increasing b.

3.2.2. Microcrack evolution driven by surface tension and chemical potential difference

We next consider the case of the microcrack surface migration driven by interface tension and the

chemical potential difference between the grain and the microcrack. Let us first examine the effect of the

chemical potential difference Dĝg on the microcrack shape, which is shown in Fig. 7. For simplicity,

the shapes are drawn in two dimensions, that is, Fig. 7 shows the cross section of the microcracks. When Dĝg
is very small or even zero, the surface tension serves to change the initial penny shape to a spherical one.

Fig. 7. A comparison of the microcrack shape for three values of Dg
_
for b ¼ 8.

Fig. 8. The spheroidization time of the penny-shaped microcracks driven by surface tension and chemical potential difference as a

function of b and Dg
_
.
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However, it is easy for the microcrack to evolve into a flat slit with increasing Dĝg (see the case of Dĝg ¼ 2 in

Fig. 7) because the volume term gradually becomes dominant in Eq. (1).

Of course, the spheroidization time t̂ts does not only depend on the aspect ratio b but also on the chemical
potential difference Dĝg, as shown in Fig. 8. When Dĝg6 0:04, t̂ts is a linear function of b for the given Dĝg, that
is, t̂ts is linearly proportional to b (similar to Eq. (21)) when the effect of the Dĝg is very small. But the relation
between b and t̂ts becomes nonlinear gradually with increasing Dĝg.
Fig. 9 shows the Dĝg dependence of the spheroidization time for three cases of b. The slope of these curves

at any point represents the magnitude of the dependence. When b ¼ 10, the Dĝg dependence of the

spheroidization time is the greatest. Because the curvature along the microcrack surface is relatively smaller

than the other two cases, the chemical potential difference becomes dominant in Eq. (1), that is, the surface

tension is the weak driving force and the microcrack evolution mainly depend on Dĝg. This is the reason why
the effect of Dĝg on t̂ts is roughly linear when b ¼ 3 as shown in Fig. 9.
Now, let us discuss the variation in the volume shrinkage rate with Dĝg and b. The volume shrinkage

is shown in Fig. 10 as a function of time for various values of b in the case of Dĝg ¼ 0:4. Similar to the

×

Fig. 9. The spheroidization time t
_

s of the penny-shaped microcracks for three values of b as a function of Dg
_
.

 

Fig. 10. Microcrack volume shrinkage––time behavior as a function of b for Dg
_ ¼ 0:4.
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microcrack evolution driven by surface tension alone, the microcrack healing time t̂th increases as b increases
and the volume shrinkage is also faster at the beginning of the evolution process and then it becomes

slower. Moreover, comparing with Fig. 6, we can find that the aspect ratio dependence of the volume

shrinkage rate is relatively weakened with increasing Dĝg and it is obvious that, for the given b, the shrinkage
rate is greater than that of the microcracks driven by surface tension alone. This means that the increase in

Dĝg accelerates the shrinkage (or healing) rate of the penny-shaped microcracks.
Fig. 11 shows the Dĝg dependence of the shrinkage rate for b ¼ 10 in detail. It is obvious that the healing

time decreases with increasing Dĝg, while the shrinkage rate increases continuously.

4. Concluding remarks

We formulated a finite element method for simulating the three-dimensional axisymmetric surface mo-

tion (or dissolution process) driven by surface tension and the chemical potential difference between the

microstructure and the environment. The validity of the method was verified by comparing the results of
the shrinkage behavior of an isolated spherical grain with the theoretical predictions.

The shape and volume evolutions of the intragranular penny-shaped microcracks were simulated during

the microcrack healing processes. Our finite element results indicated that the spheroidization time and the

rate of the microcrack volume shrinkage are related to the aspect ratio and the chemical potential difference

between the intragranular microcrack and the surrounding matrix. When the effect of the chemical po-

tential difference is very small (Dĝg6 0:04), the spheroidization time increases roughly linearly in b. For the
given penny-shaped microcrack, its volume shrinkage rate is greater at the beginning of the evolution

process and then it becomes smaller gradually. And the volume shrinkage rate decreases with increasing b.
When the aspect ratio is very small, the spheroidization time is a linear function of Dĝg. The healing rate of
the penny-shaped microcracks is accelerated by an increase in Dĝg.
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