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Abstract

An axisymmetric finite element method is developed and employed to simulate healing evolution of intragranular
penny-shaped microcracks under interface migration driven by total free energy change consisted of surface tension and
chemical potential difference between phases. The validity of the method is confirmed by an agreement of the shrinkage
and growth behavior, simulated numerically, of an isolated spherical grain with those predicted theoretically. The
results showed that the surface tension alone serves to evolve the initial penny shape to a spherical one and, coupled
with the chemical potential difference, dominates volume shrinkage of the microcracks. As the initial aspect ratio of a
microcrack increases, both spheroidization and volume shrinkage times increase continuously. And the volume
shrinkage process of the microcracks can be greatly promoted with an increase in the chemical potential difference.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When damage microcracks are generated in materials, the internal energy of the material increases to-
gether with some entropy increment, that is, the system is in a metastable state of the thermodynamic
equilibrium. If some energy is imported from the environment, the system can overcome a potential barrier
and automatically evolve along the way of minimizing the total Gibbs free energy (TGFE) of the system, so
that the damage could be healed and the material performance could be partially restored. Otherwise,
morphology of the damage microcracks, i.e. the sizes, shapes, volume fraction, and the mutual arrangement
of the microcracks, plays an important role in determining mechanical, electric and magnetic properties of
the material (Li and Chen, 1999). Therefore, it is essential to be able to understand microcrack evolution so
that the microcrack healing mechanism can be comprehended and controlled to achieve a desired specific
engineering requirement (Gao et al., 2000).
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There have been many investigations into internal crack healing and similar morphological evolution
processes over the past 40 years (Evans and Charles, 1977; Singh and Routbort, 1979; Drory and Glaeser,
1985; Scott and Tran, 1985; Carter and Glaeser, 1987; Rodel and Glaeser, 1988; Rodel and Glaeser, 1990a;
Hsueh et al., 1982; Powers and Glaeser, 1993; Suo and Wang, 1994; Svoboda and Riedel, 1995). The
microcrack shape changes under capillarity forces, namely chemical potential gradients arising from high
surface curvature (Mullins, 1957; Bonzel, 1983; Drechsler, 1983). And in many practical situations
microcrack evolution in polycrystalline materials occurs individually by solid state diffusion, the migration
of interfaces, or a combination of these processes, depending on the sample profile (conical tip, grain
boundary groove, simple or multiple scratches) and on experimental conditions (heating at low or high
temperatures, vacuum annealing or heating in equilibrium vapor pressure, geometrical dimensions of the
samples) (Binh and Uzan, 1987; Pan et al., 1997). It has been demonstrated, both theoretically and ex-
perimentally, that there are several geometrically distinct stages to the crack healing process in two di-
mensions (Rodel and Glaeser, 1990b; Powers and Glaeser, 1993; Huang et al., 2001, 2002). That is,
significant progress has been made in modeling microcrack behavior controlled by solid state diffusion. And
it can be said that the previous efforts have enabled us to relate many aspects of the macroscopic behavior
of engineering materials to their microstructures and the underlying physical processes. The situation is,
however, far from satisfactory, since real material systems are often complex and various, often unrealistic,
assumptions have to be made in the material models in order to solve the mathematical equations (Pan
et al., 1997). Especially, the kinetics of morphological evolution in axisymmetric microcracks (such as
penny-shaped microcracks) has been given less-than-adequate attention. Only a few experimental studies
have been reported (Evans and Charles, 1977; David and Evans, 1984; Yong and Wayne, 1987; Powers and
Glaeser, 1992), most of which give only qualitative information. In comparison with a two-dimensional
crack, an axisymmetric microcrack in three dimensions has two radii of curvature, the in-plane radius R,
and the axisymmetric radius R, giving rise to more complex behaviors. The evolution of such cracks would
be controlled by the driving forces induced by both curvatures. Therefore, there is a general lack of studies
of three-dimensional morphological evolution of crack healing, despite of the obvious need to understand
the phenomenon of crack healing in three dimensions. Until to now, to the author’s knowledge, litter at-
tention has been devoted to the healing evolution of penny-shaped microcracks by interface migration
either on experimental investigations, or in numerical analyses. The aim of the present project reported here
is mainly to numerically describe the morphological evolution of the penny-shaped microcracks by inter-
face migration, and the relatively experimental works will be treated elsewhere.

Recently, a weak statement for surface motion has been formulated (Suo, 1997; Carter et al., 1997). It has
weaker requirements on the smoothness of surface. On the basis of the weak statement, Sun et al. (1997)
have developed a finite element program for simulation surface motion in two dimensions. Huang and
Yang (1999) extended the two-dimensional finite element formulation to a three-dimensional (3D) finite
element scheme to simulate the migration of interfaces in materials under linear kinetics. Kim and Kishi
(1999) developed the method to simulate the Zener pinning behavior involving a three-dimensional effect
without considering the chemical potential difference between the two adjacent phases in the TGFE of the
system. The finite element method can capture intricate details in transient motion and readily includes
multiple energetic forces and rate processes. Important physical conclusions were drawn from these nu-
merical studies (Huang and Yang, 1999; Kim and Kishi, 1999; Kim et al., 1999; Kim, 2000, 2001; Prevost
et al., 2001). However, the numerical technique has certain limitations, for instance, the axisymmetrical
cases involving the chemical potential difference have not been reported in literature up to now.

In the present paper, an axisymmetric finite element formulation is developed to model the morpho-
logical evolution during the healing process of an intragranular microcrack controlled by the interface-
migration kinetics as described in the classical paper of Mullins (1957), which also can be explored to
simulate the morphology change of the second-phase precipitate particles. Considering the interface tension
and the chemical potential difference between the two adjacent phases in the TGFE, we assume that surface
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properties are independent of crystallographic orientations, namely surface energy and interface migration
rate are isotropic. Thermodynamically, in the absence of applied stress, the morphology of a penny-shaped
microcrack, similar to a single coherent particle, is determined by two factors: (1) the interfacial energy, and
(2) the chemical potential difference between the matrix and the microcrack. And the interfacial energy of a
microcrack is roughly proportional to its interfacial area, while the chemical potential difference is roughly
proportional to its volume.

2. Axisymmetric finite element method
2.1. Weak statement of interface migration

When a solid particle is in contact with an environment (a vapor or a liquid solution), or an isolated
precipitate surrounded by a matrix, the solid may gain mass from, or lose mass to, the environment, both
causing the interface to move. The surface reaction is driven by the interfacial energy and by the chemical
potential difference between the solid and the environment. In atomic scale, the movement of interface
occurs by a thermally activated atomic jump across the interface. The driving force, p, for the atomic jump
is supplied by a curvature-induced energy difference and the chemical potential difference per unit volume
of atoms between the two adjacent phases Ag (i.e., the chemical potential of the solid minus that of the
environment) (Suo, 1997).

p=—Ky—Ag (1)

where 7 is the surface energy per unit area (or surface tension) and is assumed to be isotropic. The curvature
of the interface x is positive when the surface is concave. When p = 0, the solid is in equilibrium with the
environment. When p > 0, the solid gains mass from the environment. When p < 0, the solid loses mass to
the environment. As expected, y tends to drive the solid surface in the direction toward the center of the
curvature and Ag tends to cause the solid to shrink if Ag > 0.

The actual normal velocity of the interface motion, v,, is a function of the driving force. For simplicity,
we adopt a linear kinetic law (Sun et al., 1997; Prevost et al., 2001):

v, = mp (2)

Here m is the specific rate and depends on temperature in usual way, m = mgexp(—q/kT), where my is the
frequency factor, ¢ is the activation energy, & is the Boltzmann’s constant, and 7 is the temperature. The
linear kinetic law (Eq. (2)) is a special case of a more general law introduced by Hilling and Charles (1965)
and is valid when the driving force is small compared to the average thermal energy.

A virtual displacement, or,, of the interface is a motion in the direction normal to the interface and varies
arbitrarily along the curved interface. It need not obey any kinetic law. Associated with the virtual motion,
the total free energy of the system varies by an amount 8G. Using the kinetic law (Eq. (2)), a weak statement
of interface motion can be written as (Suo, 1997; Sun et al., 1997)

/v"—ar"dA:—SG (3)

m

The actual velocity distribution, v,, satisfied Eq. (3) for arbitrary distributions of the virtual displacement.
2.2. An axisymmetric finite element

An axisymmetric surface is generated by rotating a plane curve around an axis lying on the same plane.
In this paper, we introduce frustum elements to approach the surface of axisymmetric microstructure and
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Fig. 1. A frustum element.

divide the generating curve into many small straight elements. The motions of the nodes describe the
motion of the surface. Each node on the plane curve represents a circle on the surface in three dimensions.
Fig. 1 shows one frustum element with two nodes (x,y) and (x,,)») in two dimensions. The element has
length / and slope 6, which relate to the coordinates of the two nodes as

Xy —xy =hcosl, y, —y =hsinl 4)

The local coordinate, s, is measured from the mid-point of the element. The surface area of the frustum
element is n(x; +x,)/, and the initial free energy, G, is

Gy = yu(x; +x2) + AgAV (5)

where AV is the volume of the frustum element.
For each surface element, the virtual motions of the nodes are

[8)6]-]6 = [6x1 Syl SXQ 6}/2 ]T (6)
Let x1, 1, X, and j» be the nodal velocities of the element. The generalized velocities are

fl =[x 3 % il (7)
At a point, which has distance of s, its virtual displacement 6, and normal velocity v, have the relations as
follows:

{ 8?‘,, = Nl le +N26y1 +N3 8)62 +N48y2 (8)

v, = Nix1 + Noyi + Naxy + Ny
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The interpolation coefficients are given by

1 s\ . 1 s
N, = (5?) sinf N, = (§?> cos 0
M= (205 Vsin0 No= (245 coso
=\2T)? S\2Tr)e
2.3. Nodal driving forces of the frustum element
For each element, the displacement of the node can be divided into two components. One, 8/, is parallel
to the element, and the other, dr, is normal to the element as shown in Fig. 1. When the two nodes move by

Al and Al,, both the surface area and its volume of the axisymmetric element change, and the corres-
ponding free energy varies by 6G5. Neglecting the terms of second order, 3G can be represented as

A
0G] = 2ymx; 8y — 2ymx, 81, + nTg{(yz — 1) cos 0[811(2x) + x2) + 85(2x3 + x1)]
+ (] + x5 +x1x2)(81, — 811) sin 0} (10)

The variation of the free energy caused by the displacement of the nodes in the normal direction (i.e., dr;
and dr,) 1s

A .
8G° = ynl sin 03r, + yrl sin 057, + %{f(yz — ) sin 081 (2x1 4+ x2) + 82 (205 + x1)]
+ (x] 4+ x5 + x1x2) (872 — &ry) cos 0} (11)
Then the total variation of the free energy can be expressed in terms of virtual motion of the nodes:
6Ge:—f1 8x1 —f25y1 —f36X2—f45yz (12)

The force components acting on the two nodes due to the element surface tension and chemical potential
difference Ag are

2x; cos 0 — [sin® 0 (2x1 +x2) (32 — »1)
2x, sin 0 + Isin 0 cos 0 nAg | —(f X3 +x1x2)
[/ =ym . 3 (13)
—2x,cos0 — Isin” 0 (2% +x1)0n — )
—2x,sin 8 + I'sin O cos 0 (x1 +x3 + x1x2)

2.4. Viscosity matrix of the frustum element

Using Egs. (8) and (9), and extending the integration over the surface of the frustum element, Eq. (3)
becomes:

[ [, )" = [8x)° [fif (14)
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where the viscosity matrix is

2sin? @ —2sinfcosf sin” 0 —sin fcos 6
. ml —2sinfcos0 2cos? 0 —sin 0 cos 0 cos? 0
[Hy]" = — (x1 +x2) . . . .
6m sin® 0 —sinfcosf 2sin’ 0 —2sinfcos
—sin 0 cos 0 cos? 0 —2sinOcos0 2cos?0
—sin’0  sin6cos 0 0 0
nl>cos0 | sinOcos —cos?0 0 0 (15)
6m 0 0 sin® 0 —sin O cos 0

0 0 —sin 0 cos 0 cos? 0)

The components of the viscosity matrix [H;]° and the force column [f;]° depend on the nodal positions,
and Eq. (14) isT a set of non-linear ordinary differential equations. Since the equations are to hold for any
variation [3x;]° , we can obtain the controlling equation of the finite element

[H) ] = £ (16)

The following procedure of the numerical simulation is the same as in two-dimensional problem (Sun
et al., 1997; Kim and Kishi, 1999). We can calculate the velocity of all the discrete points on the curve (in
two dimensions) by the above finite element method and let them advance by an amount v,A¢ in a direction

normal to the curve, where Ar is an appropriately chosen time increment. Repeat this procedure for many
time steps to simulate the evolution of the microstructures.

3. Numerical simulations and discussion

It is known from Eq. (1) that the surface tension and the chemical potential difference of the two phases
constitute a thermodynamic force, causing the microstructure, such as grains, microcracks and so on, to
evolve. In this section, the grain growth and shrinkage are firstly simulated by the finite element method
developed in this paper in order to check the reliability of the finite element method in simulating mi-
crostructure evolution. And the numerical results of the grain shrinkage driven by either surface tension
alone or coupled with the chemical potential difference are compared with those theoretical predictions,
respectively. Then, the finite element method is applied to analyze the healing evolution process of intra-
granular penny-shaped microcracks.

3.1. Grain growth and shrinkage

When a particle is heated, its shape evolves to reduce the free energy. Now we firstly consider an isolated
spherical grain in an isotropic matrix with an identical chemical potential, and its growth behavior is caused
only by surface tension. That is, the particle is in equilibrium with the environment and the driving force p is
—2y/R in Eq. (1), where R is the radius of the spherical grain. In this case, the general kinetic law of grain
growth is given by (Kim and Kishi, 1999)

(5) —-1=K1, (17)

Ry

where R, is the initial radius and 7,, the normalized time (= tmyR;?). The value of K obtained by fitting
a curve to Eq. (17) is —4.0 and n = 2, consistent with the theoretical values. The value of K for a two-
dimensional case is —2.0 and n = 2. For n = 2 and K = —4.0, a driving force of 2y/R is obtained for grain
boundary movement by differentiating Eq. (17) with respect to time.
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Fig. 2. Shrinkage behavior of the spherical grains.

The variation of the radius of the spherical grain R with respect to time obtained by finite element method
is shown in Fig. 2, along with two-dimensional results. It is obvious that the numerical results agree well
with the theoretical values.

Next consider a spherical particle immersed in a large mass of a vapor or solution. The system also has
only one degree of freedom, R, the radius of the sphere. Within the environment, molecular mobility is so
large that the chemical potential is taken to be uniform. The solid and the environment, however, are not in
equilibrium with each other: the solid loses mass to the environment by dissolution. And the driving force
on the surface of the spherical particle is —(2y/R) — Ag. The total free energy can be written as

G::4nR%w+§nR3Ag (18)

Here, y is always positive, but Ag can be either positive or negative. For a positive Ag, the volume term
reduces the free energy when the particle shrinks. In the case of Ag < 0, a critical radius R, corresponding to
maximal free energy is obtained by setting dG/dR = 0, giving

Y
R.=-2 Ag (19)

Imagine a particle of radius R # R.. Thermodynamics requires that the particle change size to reduce G.
If R > R, the volume term in Eq. (18) becomes increasingly important, and the particle will expand to a
larger and larger sphere to reduce G because p > 0. Contrarily, if R < R., the particle will shrink to a sphere
and disappear.

From Egs. (1) and (2), the analytical solution for the evolution of the spherical particle from an initial
radius R, is given by (Suo, 1997)

R—R.
RO _Rc

(R—Ry)+R.In = —mAgt (20)

The particle radius as a function of the time, R(¢), are shown by solid line in Fig. 3. The predictions based
on the present FEM scheme are also plotted in Fig. 3 by dots. They agree very well with each other.

Hence, the present axisymmetric finite element formulation is valid in simulating the behavior of grain
growth. And it is applicable for microstructure evolution not only controlled by surface tension, but also by
both surface tension and the chemical potential difference between the two adjacent phases.
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Fig. 3. Evolution of a spherical grain with isotropic surface tension and the chemical potential difference.
3.2. Evolution of intragranular penny-shaped microcracks

3.2.1. Microcrack evolution driven by isotropic surface tension alone

The free energy change to drive the interface migration has contributions from many origins. We now
consider the evolution of an intragranular microcrack driven by the isotropic surface tension alone. In the
present study, referring to the work of (Svoboda and Riedel, 1992), the accuracy of the numerical analysis
was checked by comparing computations based on different node numbers with one another. We found that
the differences between the model with different nodes are negligible when the total node number (N) is
larger than 80. And for convenience, we introduce the dimensionless parameters: 7 = tmyhl, Ag = Agho/7,
where the thickness of the microcrack 4, is taken as 0.2 in all of the calculations. The initial shape of the
intragranular microcrack is taken to be penny-shaped as shown in Fig. 4(a) at # = 0, which is characterized
by the aspect ratio f§ defined as the ratio of the diameter D, to the thickness /4. The surface mobility m is
assumed to be isotropic. At a fixed temperature, the intragranular microcrack evolves its shape because the
curvature of the microcrack profile varies from point to point, which causes a migration of surface atoms
from a point of higher curvature (higher chemical potential) to a point of lower curvature (lower chemical
potential). Fig. 4 shows the simulation of an intragranular penny-shaped microcrack under the condition of
B = 10. Since the microcrack evolution is only driven by the surface tension (Ag = 0), that is, R, = oo, it is
obvious that the volume of the microcrack will shrink as shown in Fig. 3. The microcrack simultaneously

D, |

'
Y

©

(b) T=8.1x107"* (© T=16x10"

Fig. 4. The shape evolution of the penny-shaped microcrack of f = 10 driven by surface tension alone.
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Fig. 5. The spheroidization time 7 of the penny-shaped microcracks only driven by surface tension as a function of f.

changes shape from a penny to a sphere and the mass in the grain leaves the grain, cross the microcrack
surface, and join to the microcrack, leading to its shrinkage, as shown in Fig. 4 at f = 1.6 x 1073, This shape
evolution process can be easily identified in many natural phenomena. Fig. 4 suggests that the microcrack
always evolves to a spherical void eventually, independent from its initial shape.

By plotting the spheroidization time of the penny-shaped microcracks as a function of the original aspect
ratio f§ (Fig. 5), we find that the spheroidization time increases roughly linearly in f§ because the trans-
portation path of the mass is long for larger . It can be best fitted using the following approximate for-
mula:

f, = (—2.4932 + 1.889p) x 10~ (21)

Fig. 6 shows the relative volume shrinkage ¥;/¥; as a function of time 7 for different values of f8, where %,
is the initial microcrack volume and V;, the volume shrinkage. ¥;/¥, = | means that the microcrack
completely vanishes, that is, the penny-shaped microcrack heals. As can be seen in Fig. 6, the microcrack
healing time #, consistently increases as 8 increases. The slope of these curves at any point represents
the shrinkage rate of the microcrack volume. The curves in Fig. 6 show that, for a given penny-shaped

1.0
VIV,
0.8 i
0.6 i
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< [
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= 04 AN e
=
wn
g ._' .
5 0.2 . g
o 3
>
0.0 T T T T T T T T
0 2 4 6 8

x1073

Fig. 6. Microcrack volume shrinkage—time behavior as a function of f.
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microcrack, its volume shrinkage rate is greater at the beginning of the evolution process and then it be-
comes smaller gradually because the curvature variation along the microcrack surface is reduced conti-
nuously as its shape changes to a spherical one. And the curves also show that the volume shrinkage rate
decreases with increasing f.

3.2.2. Microcrack evolution driven by surface tension and chemical potential difference

We next consider the case of the microcrack surface migration driven by interface tension and the
chemical potential difference between the grain and the microcrack. Let us first examine the effect of the
chemical potential difference Ag on the microcrack shape, which is shown in Fig. 7. For simplicity,
the shapes are drawn in two dimensions, that is, Fig. 7 shows the cross section of the microcracks. When Ag
is very small or even zero, the surface tension serves to change the initial penny shape to a spherical one.

LTS

Ag =04

Fig. 7. A comparison of the microcrack shape for three values of Ag for f§ = 8.

x107
10 — T T T T T T T T

M)

Normalized Spheroidization Time

Fig. 8. The spheroidization time of the penny-shaped microcracks driven by surface tension and chemical potential difference as a
function of f and Ag.
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However, it is easy for the microcrack to evolve into a flat slit with increasing Ag (see the case of Ag =2 in
Fig. 7) because the volume term gradually becomes dominant in Eq. (1).

Of course, the spheroidization time #, does not only depend on the aspect ratio 8 but also on the chemical
potential difference Ag, as shown in Fig. 8. When Ag < 0.04, £, is a linear function of f§ for the given Ag, that
is, Z is linearly proportional to f§ (similar to Eq. (21)) when the effect of the Ag is very small. But the relation
between B and 7, becomes nonlinear gradually with increasing Ag.

Fig. 9 shows the Ag dependence of the spheroidization time for three cases of 5. The slope of these curves
at any point represents the magnitude of the dependence. When f = 10, the Ag dependence of the
spheroidization time is the greatest. Because the curvature along the microcrack surface is relatively smaller
than the other two cases, the chemical potential difference becomes dominant in Eq. (1), that is, the surface
tension is the weak driving force and the microcrack evolution mainly depend on Ag. This is the reason why
the effect of Ag on £ is roughly linear when 8 = 3 as shown in Fig. 9.

Now, let us discuss the variation in the volume shrinkage rate with Ag and f. The volume shrinkage
is shown in Fig. 10 as a function of time for various values of f§ in the case of Ag = 0.4. Similar to the
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Fig. 10. Microcrack volume shrinkage—time behavior as a function of § for Ag = 0.4.
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Fig. 11. Microcrack volume shrinkage—time behavior as a function of Ag for f = 10.

microcrack evolution driven by surface tension alone, the microcrack healing time #, increases as f§ increases
and the volume shrinkage is also faster at the beginning of the evolution process and then it becomes
slower. Moreover, comparing with Fig. 6, we can find that the aspect ratio dependence of the volume
shrinkage rate is relatively weakened with increasing Ag and it is obvious that, for the given f3, the shrinkage
rate is greater than that of the microcracks driven by surface tension alone. This means that the increase in
Ag accelerates the shrinkage (or healing) rate of the penny-shaped microcracks.

Fig. 11 shows the Ag dependence of the shrinkage rate for f = 10 in detail. It is obvious that the healing
time decreases with increasing Ag, while the shrinkage rate increases continuously.

4. Concluding remarks

We formulated a finite element method for simulating the three-dimensional axisymmetric surface mo-
tion (or dissolution process) driven by surface tension and the chemical potential difference between the
microstructure and the environment. The validity of the method was verified by comparing the results of
the shrinkage behavior of an isolated spherical grain with the theoretical predictions.

The shape and volume evolutions of the intragranular penny-shaped microcracks were simulated during
the microcrack healing processes. Our finite element results indicated that the spheroidization time and the
rate of the microcrack volume shrinkage are related to the aspect ratio and the chemical potential difference
between the intragranular microcrack and the surrounding matrix. When the effect of the chemical po-
tential difference is very small (Ag < 0.04), the spheroidization time increases roughly linearly in . For the
given penny-shaped microcrack, its volume shrinkage rate is greater at the beginning of the evolution
process and then it becomes smaller gradually. And the volume shrinkage rate decreases with increasing f.
When the aspect ratio is very small, the spheroidization time is a linear function of Ag. The healing rate of
the penny-shaped microcracks is accelerated by an increase in Ag.
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